Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
BMC Anesthesiol ; 24(1): 147, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632505

RESUMEN

OBJECTIVE: The aim of this study is to observe the anesthetic effect and safety of intravenous anesthesia without muscle relaxant with propofol-remifentanil combined with regional block under laryngeal mask airway in pediatric ophthalmologic surgery. METHODS: A total of 90 undergoing ophthalmic surgery were anesthetized with general anesthesia using the laryngeal mask airway without muscle relaxant. They were randomly divided into two groups: 45 children who received propofol-remifentanil intravenous anesthesia combined with regional block (LG group), and 45 children who received total intravenous anesthesia (G group). The peri-operative circulatory indicators, awakening time after general anesthesia, postoperative analgesic effect and the incidence of anesthesia-related adverse events were respectively compared between the two groups. RESULTS: All the children successfully underwent the surgical procedure. The awakening time after general anesthesia and removal time of laryngeal mask were significantly shorter in the LG group than in the G group (P < 0.05). There was no statistically significant difference in the heart rates in the perioperative period between the two groups (P > 0.05). There was no statistically significant difference in the incidence of intraoperative physical response, respiratory depression, postoperative nausea and vomiting (PONV) and emergence agitation (EA) between the two groups (P > 0.05). The pain score at the postoperative hour 2 was lower in the LG group than in the G group (P < 0.05). CONCLUSION: Propofol-remifentanil intravenous anesthesia combined with long-acting local anesthetic regional block anesthesia, combined with laryngeal mask ventilation technology without muscle relaxants, can be safely used in pediatric eye surgery to achieve rapid and smooth recovery from general anesthesia and better postoperative analgesia. This anesthesia scheme can improve the comfort and safety of children in perioperative period, and has a certain clinical popularization value.


Asunto(s)
Propofol , Niño , Humanos , Anestesia General , Anestesia Intravenosa/métodos , Anestésicos Intravenosos , Propofol/uso terapéutico , Remifentanilo
2.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674974

RESUMEN

Due to the increasing amounts of textile waste, textile to textile recycling is of prime concern. Polyethylene terephthalate (PET) represents the most extensively used type of chemical fiber. Its spinnability suffers from impurities and degradation in the processing, which limits its recycling to new fibers. Here, recycled polyester is blended with a small amount of recycled nylon, and the regenerated fibers, which demonstrated good mechanical properties, were obtained via a melt spinning machine. The mechanical properties, thermal properties, rheological properties, and chemical structure of the modified recycled fibers were investigated. It was found that when compared with rPET-T fibers, the elongation at break of rPET-Ax fibers increased to 17.48%, and the strength at break decreased to 3.79 cN/dtex. The compatibility of PET and PA6 copolymer were enhanced by copolymers produced by in-situ reaction in the processing. Meanwhile, the existence of PA6 increases the crystallization temperature and improves the hydrophilicity of the fibers. This study realized the high-value recycling of waste PET fabric to new fibers, which opens a door for the large utilization of waste textiles.

3.
Chemistry ; 30(20): e202400045, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38298110

RESUMEN

Cinnamic ester is a common and abundant chemical substance, which can be extracted from natural plants. Compared with traditional esters, cinnamic ester contains α,ß-unsaturated carbonyl structure with multiple reactive sites, resulting in more abundant reactivities and chemical structures. Here, a versatile polymerization-induced emission (PIE) is successfully demonstrated through Barbier polymerization of cinnamic ester. Attributed to its abundant reactivities of α,ß-unsaturated carbonyl structure, Barbier polymerization of cinnamic esters with different organodihalides gives polyalcohol and polyketone via 1,2-addition and 1,4-addition, respectively, which is also confirmed by small molecular model reactions. Meanwhile, these organodihalides dependant polyalcohol and polyketone exhibit different non-traditional intrinsic luminescence (NTIL) from aggregation-induced emission (AIE) type to aggregation-caused quenching (ACQ) type, where novel PIE luminogens (PIEgens) are revealed. Further potential applications in explosive detection are carried out, where it achieves TNT detection sensitivity at ppm level in solution and ng level on the test paper. This work therefore expands the structure and functionality libraries of monomer, polymer and NTIL, which might cause inspirations to different fields including polymer chemistry, NTIL, AIE and PIE.

4.
Macromol Rapid Commun ; : e2400045, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365211

RESUMEN

Non-traditional intrinsic luminescent (NTIL) polymer is an emerging field, and its color-tunable modification is highly desirable but still rarely investigated. Here, a click chemistry approach for the color-tunable modifications of NTIL polymers by introducing clickable polymerization-induced emission luminogen (PIEgen), is demonstrated. Through Cu-catalyzed azide-alkyne cycloaddition click chemistry, a series of PIEgens is successful prepared, which is further polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Interestingly, after clickable modification, these monomers are nonemissive in both solution and aggregation states; while, the corresponding polymers exhibit intriguing aggregation-induced emission (AIE) characteristics, confirming their PIEgen characteristics. By varying alkynyl substitutions, color-tunable NTIL polymers are achieved with emission wavelength varying from 448 to 498 nm, revealing a series of PIEgens and verifying the importance of modification of NTIL polymers. Further luminescence energy transfer application is carried out as well. This work therefore designs a series of clickable PIEgens and opens a new avenue for the modification of NTIL polymers via click chemistry, which may cause inspirations to the research fields including luminescent polymer, NTIL, click chemistry, AIE and modification.

5.
Ann Am Thorac Soc ; 21(3): 393-401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37962906

RESUMEN

Rationale: The relationship between symptoms, measured using a validated disease-specific questionnaire, and longitudinal exacerbation risk has not been demonstrated in bronchiectasis. Objectives: The aim of this study is to investigate whether baseline symptoms, assessed using the Quality-of-Life Bronchiectasis Respiratory Symptom Scale (QoL-B-RSS) and its individual component scores, could predict future exacerbation risk in patients with bronchiectasis. Methods: The study included 436 adults with bronchiectasis from three tertiary hospitals. Symptoms were measured using the QoL-B-RSS, with scores ranging from 0 to 100, where lower scores indicated more severe symptoms. We examined whether symptoms as continuous measures were associated with the risk of exacerbation over 12 months. The analysis was also repeated for individual components of the QoL-B-RSS score. Results: The baseline QoL-B-RSS score was associated with an increased risk of exacerbations (rate ratio, 1.25 for each 10-point decrease; 95% confidence interval [CI], 1.15-1.35; P < 0.001), hospitalizations (rate ratio, 1.24; 95% CI, 1.05-1.43; P = 0.02), and reduced time to the first exacerbation (hazard ratio, 1.12; 95% CI, 1.03-1.21; P = 0.01) over 12 months, even after adjusting for relevant confounders, including exacerbation history. The QoL-B-RSS score was comparable to exacerbation history in its association with future frequent exacerbations (defined as three or more exacerbations per year) and hospitalization (area under the curve, 0.86 vs. 0.84; P = 0.46; and area under the curve, 0.81 vs. 0.83; P = 0.41, respectively). Moreover, patients with more severe symptoms in the majority of individual components of the QoL-B-RSS were more likely to experience exacerbations. Conclusions: Symptoms can serve as useful indicators for identifying patients at increased risk of exacerbation in bronchiectasis. Beyond relying solely on exacerbation history, a comprehensive assessment of symptoms could facilitate timely and cost-effective implementation of interventions for exacerbation prevention.


Asunto(s)
Bronquiectasia , Calidad de Vida , Adulto , Humanos , Estudios Prospectivos , Bronquiectasia/complicaciones , Hospitalización , Centros de Atención Terciaria
6.
Chemistry ; 30(7): e202303292, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38014866

RESUMEN

The properties of polyethylene are highly dependent on the variety and quantity of substitutions. Generally, polyethylene can only be fully substituted with fluorine atoms, mainly e. g., polytetrafluoroethylene and nafion, because atomic radius of fluorine atom is small enough. The preparation of fully substituted polyethylene analogues (FSPEA) and their non-traditional intrinsic luminescence (NTIL) are attractive, especially for substitutions with relatively larger atomic radii than a fluorine atom. Here, Barbier polymerization-induced emission (PIE) is demonstrated as a universal method for the molecular design of NTIL type FSPEAs with intriguing aggregation-induced emission (AIE) behaviors. Through Barbier polymerization of diphenyldichloromethane and different peroxyesters in the presence of Mg in one pot, a series of FSPEAs, including polytriphenylethanol (PTPE), polydiphenylfurylethanol (PDPFE), polydiphenylthiophenylethanol (PDPTE) and polydiphenylnaphthylethanol (PDPNE) have been successfully prepared. Further potential applications for explosive detection, artificial light-harvesting system and white phosphor-converted light-emitting diode are investigated. Therefore, this work opens up a new approach for the molecular design of FSPEA with non-conjugated luminescence, which may cause inspirations to different research fields like polyolefin and luminescent materials.

7.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5548-5557, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114147

RESUMEN

To explore the quality consistency evaluation method for multi-component traditional Chinese medicine and establish a dissolution evaluation method suitable for the characteristics of multi-component Chinese patent medicine, this study discussed the characteristics and advantages of the flow-through cell method in the dissolution evaluation of Chinese patent medicine by comparing the impact of the small cup method and the flow-through cell method on the dissolution behavior of water-soluble and lipid-soluble major active components of Danshen Tablets. Dissolution tests were performed using the small cup method as described in the 2020 edition of the Chinese Pharmacopoeia and the newly introduced flow-through cell method(closed-loop method) with water solution containing 0.5% SDS as dissolution medium. Cumulative dissolution curves of the water-soluble component salvianolic acid B and the lipid-soluble component tanshinone Ⅱ_A in Danshen Tablets were plotted, and fitting and similarity analysis of the dissolution models was conducted to identify the characteristics and advantages of the flow-through cell method. For the small cup method, 150 mL of water containing 0.5% SDS was used as the dissolution medium, with a rotation speed of 75 r·min~(-1) and a temperature of(37±0.5) ℃, and 3 mL of samples were taken at 15, 30 min, 1, 2, and 4 h, with fresh dissolution medium added at the same temperature and volume. For the flow-through cell method, a closed-loop system was used. Danshen Tablets were placed in the flow-through cell with approximately 6.7 g of glass beads, and 150 mL of water containing 0.5% SDS was used as the dissolution medium. The flow rate was set at 20 mL·min~(-1), and the temperature and sampling were the same as the small cup method. The results showed that compared with the small cup method, the flow-through cell method had stronger discriminative power and higher sensitivity in distinguishing the dissolution behavior of the two components, and could better reflect the differences in formulation quality, especially for water-insoluble lipid-soluble components. Given that there were no essential differences in the in vitro release kinetics between the two methods, the flow-through cell method could not only replace the traditional small cup method but also better guide the formulation development and identify quality issues of formulations.


Asunto(s)
Salvia miltiorrhiza , Medicina Tradicional China , Comprimidos , Agua , Lípidos , Solubilidad
8.
ACS Nano ; 17(22): 23181-23193, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37956093

RESUMEN

The violent side reactions of Zn metal in aqueous electrolyte lead to sharp local-pH fluctuations at the interface, which accelerate Zn anode breakdown; thus, the development of an optimization strategy to accommodate a wide pH range is particularly critical for improving aqueous Zn metal batteries. Herein, we report a pH-adaptive electric double layer (EDL) tuned by glycine (Gly) additive with pH-dependent ionization, which exhibits excellent capability to stabilize Zn anodes in wide-pH aqueous electrolytes. It is discovered that a Gly-ionic EDL facilitates the directed migration of charge carriers in both mildly acidic and alkaline electrolytes, leading to the successful suppression of local saturation. It is worth mentioning that the regulation effect of the additive concentration on the inner Helmholtz plane (IHP) structure of Zn electrodes is clarified in depth. It is revealed that the Gly additives without dimerization can develop orderly and dense vertical adsorption within the IHP to effectively reduce the EDL repulsive force of Zn2+ and isolate H2O from the anode surface. Consequently, they Zn anode with tunable EDL exhibits superior electrochemical performance in a wide range of pH and temperature, involving the prodigious cycle reversibility of 7000 h at Zn symmetric cells with ZnSO4-Gly electrolytes and an extended lifespan of 50 times in Zn symmetric cells with KOH-Gly electrolytes. Moreover, acidic Zn powder||MnO2 pouch cells, and alkaline high-voltage Zn||Ni0.8Co0.1Mn0.1O2 cells, and Zn||NiCo-LDH cells also deliver excellent cycling reversibility. The tunable EDL enables the ultrahigh depth of discharge (DOD) of 93%. This work elucidates the design of electrolyte additives compatible in a wide range of pH and temperature, which might cause inspiration in the fields of practical multiapplication scenarios for Zn anodes.

9.
Front Psychiatry ; 14: 1251955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736060

RESUMEN

Objective: Bipolar disorder (BD) and major depressive disorder (MDD) are two common psychiatric disorders. Due to the overlapping clinical symptoms and the lack of objective diagnostic biomarkers, bipolar disorder (BD) is easily misdiagnosed as major depressive disorder (MDD), which in turn affects treatment decisions and prognosis. This study aimed to investigate biomarkers that could be used to differentiate BD from MDD. Methods: Nuclear magnetic resonance (NMR) spectroscopy was performed to assess serum metabolic profiles in depressed patients with BD (n = 59), patients with MDD (n = 14), and healthy controls (n = 10). Data was analyzed using partial least squares discriminant analysis, orthogonal partial least squares discriminant analysis and t-tests. Different metabolites (VIP > 1 and p < 0.05) were identified and further analyzed using Metabo Analyst 5.0 to identify relevant metabolic pathways. Results: The metabolic phenotypes of the BD and MDD groups were significantly different from those of the healthy controls, and there were different metabolite differences between them. In the BD group, the levels of 3-hydroxybutyric acid, n-acetyl glycoprotein, ß-glucose, pantothenic acid, mannose, glycerol, and lipids were significantly higher than those in the healthy control group, and the levels of lactate and acetoacetate were significantly lower than those in the healthy control group. In the MDD group, the levels of 3-hydroxybutyric acid, n-acetyl glycoprotein, pyruvate, choline, acetoacetic acid, and lipids were significantly higher than those of healthy controls, and the levels of acetic acid and glycerol were significantly lower than those of healthy controls. Conclusion: Glycerolipid metabolism is significantly involved in BD and MDD. Pyruvate metabolism is significantly involved in MDD. Pyruvate, choline, and acetate may be potential biomarkers for MDD to distinguish from BD, and pantothenic acid may be a potential biomarker for BD to distinguish from MDD.

10.
ACS Appl Mater Interfaces ; 15(30): 36312-36323, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486250

RESUMEN

Developing visible-light-driven photocatalysts for the catalytic dehydrogenation of organics is of great significance for sustainable solar energy utilization. Here, we first report that aromatic alcohols could be efficiently split into H2 and aldehydes over TiO2 under visible-light irradiation through a ligand-to-metal charge transfer (LMCT) mechanism. A series of TiO2 catalysts with different surface contents of the hydroxyl group (-OH) have been synthesized by controlling the hydrothermal and calcination synthesis methods. An optimal H2 production rate of 18.6 µmol h-1 is obtained on TiO2 synthesized from the hydrothermal method with a high content of surface -OH. Experimental characterizations and comparison studies reveal that the surface -OH markedly influences the formation of LMCT complexes and thus changes the visible-light-driven photocatalytic performance. This work is anticipated to inspire further research endeavors in the design and fabrication of visible-light-driven photocatalyst systems based on the LMCT mechanism to realize the simultaneous synthesis of clean fuel and fine chemicals.

11.
Angew Chem Int Ed Engl ; 62(31): e202304033, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263979

RESUMEN

The development of novel polymerization capable of yielding polymers with low molecular weight distribution (D) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low D are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3-3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low D and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.

12.
Front Med (Lausanne) ; 10: 1058001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824611

RESUMEN

Background: The high-resolution computed tomography (HRCT) score is an important component of the severity and prognosis score of pulmonary alveolar proteinosis (SPSP). However, the HRCT score in SPSP only considers the extent of opacity, which is insufficient. Methods: We retrospectively evaluated HRCT scores for 231 patients with autoimmune pulmonary alveolar proteinosis (APAP) from three centers of the China Alliance for Rare Diseases. The SPSPII was created based on the overall density and extent, incorporating the SPSP. The severity of APAP patients was assessed using disease severity scores (DSS), SPSP, and SPSPII to determine the strengths and weaknesses of the different assessment methods. We then prospectively applied the SPSPII to patients before treatment, and the curative effect was assessed after 3 months. Results: The HRCT overall density and extent scores in our retrospective analysis were higher than the extent scores in all patients and every original extent score severity group, as well as higher related to arterial partial oxygen pressure (PaO2) than extent scores. The mild patients accounted for 61.9% based on DSS 1-2, 20.3% based on SPSP 1-3, and 20.8% based on SPSPII 1-3. Based on SPSP or SPSPII, the number of severe patients deteriorating was higher in the mild and moderate groups. When applied prospectively, arterial PaO2 differed between any two SPSPII severity groups. The alveolar-arterial gradient in PaO2 (P[A-a]O2), % predicted carbon monoxide diffusing capacity of the lung (DLCO), and HRCT score were higher in the severe group than in the mild and moderate groups. After diagnosis, mild patients received symptomatic treatment, moderate patients received pure whole lung lavage (WLL) or granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy, and severe patients received WLL and GM-CSF therapy. Importantly, the SPSPII in mild and severe groups were lower than baseline after 3 months. Conclusion: The HRCT density and extent scores of patients with APAP were better than the extent score. The SPSPII score system based on smoking status, symptoms, PaO2, predicted DLCO, and overall HRCT score was better than DSS and SPSP for assessing the severity and efficacy and predicting the prognosis. Trial registration: ClinicalTrial.gov, identifier: NCT04516577.

14.
ACS Macro Lett ; 12(1): 40-47, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36546477

RESUMEN

Stimuli-responsive opposite emission (A)/absorption (B) polymer material (A∪B = Ω and A∩B = Ø) represents a novel polymer material that is difficult to prepare. Here, we demonstrate a one-pot strategy for the molecular design of stimuli-responsive opposite emission/absorption polymer material with intriguing properties of opposite emission/absorption and aggregation-induced emission (AIE) type nontraditional intrinsic luminescence (NTIL) in the visible region, through reversible addition-fragmentation chain transfer polymerization-induced emission (PIE) of the N,N-dimethyl-triphenylmethanol moiety. Investigations reveal that NTIL is due to the through-space conjugation effect caused by polymer chain entanglement, when increasing the repeating unit number. The corresponding stimuli-responsive opposite emission/absorption properties are derived from the carbocation-quinoid mechanism, which enables the fluorescence encryption capability. This work therefore demonstrates the proof of concept of a novel opposite emission/absorption polymer material that might cause inspiration in different fields.


Asunto(s)
Polímeros de Estímulo Receptivo , Polimerizacion , Polímeros , Colorantes , Fluorescencia
15.
Chempluschem ; 88(1): e202200388, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581503

RESUMEN

The Barbier reaction, a classical name reaction for carbon-carbon bond formation, has played important roles in organic chemistry for over 120 years. The introduction of the Barbier reaction into polymer chemistry for the development of a novel Barbier polymerization, expands the methodology, monomer, chemical structure and property libraries of polymerization, aggregation-induced emission (AIE) and non-traditional intrinsic luminescence (NTIL). This mini review focuses on Barbier polymerization, including the brief introduction of the history and importance of polymerization methods design and the achievements of Barbier polymerization from molecular design strategies, functionalities and properties. An outlook of Barbier polymerization is also proposed. This mini review on Barbier polymerization therefore may cause inspirations to scientists in different fields.


Asunto(s)
Luminiscencia , Polimerizacion
16.
Front Psychiatry ; 14: 1319870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264633

RESUMEN

This study identified the metabolic biomarkers for different clinical phases of bipolar disorder (BD) through metabolomics. BD patients were divided into three groups: patients with BD and depressive episodes (BE, n = 59), patients with BD and mania/hypomania episodes (BH, n = 16), patients with BD and mixed episodes (BM, n = 10), and healthy controls (HC, n = 10). Serum from participants was collected for metabolomic sequencing, biomarkers from each group were screened separately by partial least squares analysis, and metabolic pathways connected to the biomarkers were identified. Compared with the controls, 3-D-hydroxyacetic acid and N-acetyl-glycoprotein showed significant differences in the BE, BH, and BM groups. This study suggests that different clinical types of BD share the same metabolic pathways, such as pyruvate, glycolysis/gluconeogenesis, and ketone body metabolisms. In particular, abnormal glycine, serine, and threonine metabolism was specific to BM; ß-glucose, glycerol, lipids, lactate, and acetoacetate metabolites were specific to depressive episodes; the guanidine acetic acid metabolites specific to BH; and the acetic and ascorbic acids were metabolites specific to manic and BM. We screened potential biomarkers for different clinical phases of BD, which aids in BD typing and provides a theoretical basis for exploring the molecular mechanisms of BD.

17.
Chem Commun (Camb) ; 58(96): 13361-13364, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36377654

RESUMEN

The Barbier reaction is generally regarded as a one-pot Grignard reaction. Here, the Grignard reaction of cinnamaldehyde is demonstrated to give a 1,2-addition product, while the Barbier reaction of cinnamaldehyde yields a macromolecule with interesting aggregation-induced emission type non-conjugated luminescence properties, which indicates that the Barbier reaction cannot be regarded as a one-pot Grignard reaction.

18.
Chemistry ; 28(48): e202201194, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35655328

RESUMEN

Luminescent polymer materials have gained considerable research efforts in the past decades and are generally molecular designed by extending the π system of the polymer main chain or by incorporating chromophores into the polymer chain, which suffer from poor solubility, difficult synthesis, or multi-step procedures. Meanwhile, according to the step-growth polymerization theory, synthesis of hyperbranched polymers from an AB-type monomer is still challenging. Herein, we report a one-pot synthesis of nonconjugated luminescent hyperbranched polymer material via Barbier hyperbranching polymerization-induced emission (PIE) from an AB-type monomer. The key step in the realization of the hyperbranched polymer is bi-functionalization of a mono-functional group. Through a Barbier reaction between an organohalide and an ester group in one pot, bi-functionalization of mono-functional ester is realized through two-step nucleophilic additions, resulting in hyperbranched polytriphenylmethanols (HPTPM). Attributed to through-space conjugation and inter- and intramolecular charge-transfer effects induced by polymer chain, nonconjugated HPTPMs are PIEgens, which are tunable by monomer structure and polymerization time. When all phenyl groups are rotatable, HPTPM is aggregation-induced emission type PIEgen. Whereas, it is aggregation-caused quenching type PIEgen if some phenyl groups are rotation forbidden. Further potential applications of PIEgen are in the fields of explosive detection and artificial light harvesting systems. This work, therefore, expands the monomer library and molecular design library of hyperbranched polymers through "bi-functionalization of mono-functional group" strategy, which eventually expands the preparation library of nonconjugated luminescent polymer materials through one-pot PIE from nonemissive monomer.

19.
Polymers (Basel) ; 14(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631907

RESUMEN

The isosteric replacement of C═C by B-N units in conjugated organic systems has recently attracted tremendous interest due to its desirable optical, electronic and sensory properties. Compared with BN-, NBN- and BNB-doped polycyclic aromatic hydrocarbons, NBN-embedded polymers are poised to expand the diversity and functionality of olefin polymers, but this new class of materials remain underexplored. Herein, a series of polymers with BNB-doped π-system as a pendant group were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from NBN-containing vinyl monomers, which was prepared via intermolecular dehydration reaction between boronic acid and diamine moieties in one pot. Poly{2-(4-Vinylphenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine} (P1), poly{N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)phenyl)acrylamide} (P2) and poly{N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide} (P3) were successfully synthesized. Their structure, photophysical properties and application in metal ion detection were investigated. Three polymers exhibit obvious solvatochromic fluorescence. As fluorescent sensors for the detection of Fe3+ and Cr3+, P1 and P2 show excellent selectivity and sensitivity. The limit of detection (LOD) achieved by Fe3+ is 7.30 nM, and the LOD achieved by Cr3+ is 14.69 nM, which indicates the great potential of these NBN-embedded polymers as metal fluorescence sensors.

20.
Sci Total Environ ; 839: 156362, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35640747

RESUMEN

Plastic wastes are ubiquitous in the offshore and oceans with an increasing quantity, and inevitably, microbial communities colonized the plastics to form biofilms, which have become dispersal vectors for antibiotic resistance genes (ARGs). This study focused on the impact of plastic properties including hardness, wettability, and zeta-potential on the biomass, prokaryotic and eukaryotic communities and ARGs in biofilms formed on specific plastics (polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)) in an estuarine environment. The results showed that, in comparison to PP, more biomass characterized by more dry weight, chlorophyll a (Chl a) and total organic carbon (TOC) was found in biofilms formed on PE and PET, which may be related to their lower surface wettability. Proteobacteria were the dominant prokaryotic phyla, and they accounted for 53.06%, 81.90%, 37.06%, 76.25%, and 54.27% of the total sequences in biofilms on PE, PP, PET, water and sediment, respectively. Ascomycota were the predominant eukaryotic phyla in biofilms, water, and sediment, and their abundances were elevated in biofilms on PP, which accounted for 34.73%. The biofilms on PP had a higher relative abundance of ARGs (3.13) compared to those on PE (2.59) and PET (0.23). Furthermore, both the plastic-biofilm properties (e.g. dry weight, Chl a, and TOC) and microbial communities (e.g., Fungi and Proteobacteria) may be involved in regulating the abundance of ARGs. Moreover, mobile genetic elements (MGEs) were significantly correlated to both the absolute and relative abundance of ARGs, indicating that MGEs may regulate the migration of ARGs in biofilms. Taken together, this investigation provides the significance of the plastic type, surface properties, and surrounding environments in shaping microbial communities and ARGs in biofilms formed on plastics.


Asunto(s)
Antibacterianos , Eucariontes , Antibacterianos/análisis , Biopelículas , Clorofila A , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Plásticos , Tereftalatos Polietilenos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...